
Python Errors and Built-in
Exceptions
Python (interpreter) raises exceptions when it encounter errors. For example:
divided by zero. In this article, you will learn about different exceptions that are
built-in in Python.

When writing a program, we, more often than not, will encounter errors.

Error caused by not following the proper structure (syntax) of the language is called
syntax error or parsing error.

>>> if a < 3

 File "<interactive input>", line 1

 if a < 3

 ^

SyntaxError: invalid syntax

We can notice here that a colon is missing in the if statement.

Errors can also occur at runtime and these are called exceptions. They occur, for
example, when a file we try to open does not exist (FileNotFoundError), dividing a
number by zero (ZeroDivisionError), module we try to import is not found
(ImportError) etc.

Whenever these type of runtime error occur, Python creates an exception object. If
not handled properly, it prints a traceback to that error along with some details about
why that error occurred.

>>> 1 / 0

Traceback (most recent call last):

 File "<string>", line 301, in runcode

 File "<interactive input>", line 1, in <module>

ZeroDivisionError: division by zero

>>> open("imaginary.txt")

Traceback (most recent call last):

 File "<string>", line 301, in runcode

 File "<interactive input>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory: 'imaginary.txt'

Python Built-in Exceptions

Illegal operations can raise exceptions. There are plenty of built-in exceptions in
Python that are raised when corresponding errors occur. We can view all the built-in
exceptions using the local() built-in functions as follows.

>>> locals()['__builtins__']

This will return us a dictionary of built-in exceptions, functions and attributes.

Some of the common built-in exceptions in Python programming along with the error
that cause then are tabulated below.

Python Built-in Exceptions

Exception Cause of Error

AssertionError Raised when assert statement fails.

AttributeError Raised when attribute assignment or reference fails.

EOFError Raised when the input() functions hits end-of-file condition.

FloatingPointError Raised when a floating point operation fails.

GeneratorExit Raise when a generator's close() method is called.

ImportError Raised when the imported module is not found.

IndexError Raised when index of a sequence is out of range.

KeyError Raised when a key is not found in a dictionary.

KeyboardInterrupt Raised when the user hits interrupt key (Ctrl+c or delete).

MemoryError Raised when an operation runs out of memory.

NameError Raised when a variable is not found in local or global scope.

NotImplementedError Raised by abstract methods.

OSError Raised when system operation causes system related error.

OverflowError
Raised when result of an arithmetic operation is too large to be

represented.

ReferenceError
Raised when a weak reference proxy is used to access a garbage

collected referent.

RuntimeError Raised when an error does not fall under any other category.

StopIteration
Raised by next() function to indicate that there is no further

item to be returned by iterator.

SyntaxError Raised by parser when syntax error is encountered.

IndentationError Raised when there is incorrect indentation.

TabError Raised when indentation consists of inconsistent tabs and spaces.

SystemError Raised when interpreter detects internal error.

SystemExit Raised by sys.exit() function.

TypeError
Raised when a function or operation is applied to an object of

incorrect type.

UnboundLocalError
Raised when a reference is made to a local variable in a function

or method, but no value has been bound to that variable.

UnicodeError
Raised when a Unicode-related encoding or decoding error

occurs.

UnicodeEncodeError Raised when a Unicode-related error occurs during encoding.

UnicodeDecodeError Raised when a Unicode-related error occurs during decoding.

UnicodeTranslateError Raised when a Unicode-related error occurs during translating.

ValueError
Raised when a function gets argument of correct type but

improper value.

ZeroDivisionError
Raised when second operand of division or modulo operation is

zero.

.

Python Exception Handling - Try,
Except and Finally
In this article, you'll learn how to handle exceptions in your Python program using try, except and

finally statements. This will motivate you to write clean, readable and efficient code in Python.

Table of Contents

 What are exceptions in Python?
 Catching Exceptions in Python
 Catching Specific Exceptions in Python
 Raising Exceptions
 try...finally

What are exceptions in Python?

Python has many built-in exceptions which forces your program to output an error
when something in it goes wrong.

When these exceptions occur, it causes the current process to stop and passes it to
the calling process until it is handled. If not handled, our program will crash.

For example, if function A calls function B which in turn calls function C and an
exception occurs in function C. If it is not handled in C, the exception passes to B and
then to A.

If never handled, an error message is spit out and our program come to a sudden,
unexpected halt.

Catching Exceptions in Python

In Python, exceptions can be handled using a try statement.

A critical operation which can raise exception is placed inside the try clause and the
code that handles exception is written in except clause.

It is up to us, what operations we perform once we have caught the exception. Here
is a simple example.

import module sys to get the type of exception

import sys

https://www.programiz.com/python-programming/exception-handling#what
https://www.programiz.com/python-programming/exception-handling#catching
https://www.programiz.com/python-programming/exception-handling#specific
https://www.programiz.com/python-programming/exception-handling#raising
https://www.programiz.com/python-programming/exception-handling#try
https://www.programiz.com/python-programming/exceptions
https://www.programiz.com/python-programming/function

randomList = ['a', 0, 2]

for entry in randomList:

 try:

 print("The entry is", entry)

 r = 1/int(entry)

 print("The reciprocal of",entry,"is",r)

 break

 except:

 print("Oops!",sys.exc_info()[0],"occured.")

 print("Next entry.")

 print()

Output

The entry is a

Oops! <class 'ValueError'> occured.

Next entry.

The entry is 0

Oops! <class 'ZeroDivisionError' > occured.

Next entry.

The entry is 2

The reciprocal of 2 is 0.5

In this program, we loop until the user enters an integer that has a valid reciprocal.
The portion that can cause exception is placed inside try block.

If no exception occurs, except block is skipped and normal flow continues. But if any
exception occurs, it is caught by the except block.

Here, we print the name of the exception using ex_info() function inside sys module
and ask the user to try again. We can see that the values 'a' and '1.3' causes
ValueError and '0' causes ZeroDivisionError.

Catching Specific Exceptions in Python

In the above example, we did not mention any exception in the except clause.

This is not a good programming practice as it will catch all exceptions and handle
every case in the same way. We can specify which exceptions an except clause will
catch.

A try clause can have any number of except clause to handle them differently but
only one will be executed in case an exception occurs.

We can use a tuple of values to specify multiple exceptions in an except clause.
Here is an example pseudo code.

try:

 # do something

 pass

except ValueError:

 # handle ValueError exception

 pass

except (TypeError, ZeroDivisionError):

 # handle multiple exceptions

 # TypeError and ZeroDivisionError

 pass

except:

 # handle all other exceptions

 pass

Raising Exceptions

In Python programming, exceptions are raised when corresponding errors occur at
run time, but we can forcefully raise it using the keyword raise.

We can also optionally pass in value to the exception to clarify why that exception
was raised.

>>> raise KeyboardInterrupt

Traceback (most recent call last):

...

KeyboardInterrupt

>>> raise MemoryError("This is an argument")

Traceback (most recent call last):

...

MemoryError: This is an argument

>>> try:

... a = int(input("Enter a positive integer: "))

... if a <= 0:

... raise ValueError("That is not a positive number!")

... except ValueError as ve:

... print(ve)

...

Enter a positive integer: -2

That is not a positive number!

try...finally

The try statement in Python can have an optional finally clause. This clause is
executed no matter what, and is generally used to release external resources.

For example, we may be connected to a remote data center through the network or
working with a file or working with a Graphical User Interface (GUI).

In all these circumstances, we must clean up the resource once used, whether it was
successful or not. These actions (closing a file, GUI or disconnecting from network)
are performed in the finally clause to guarantee execution.

Here is an example of file operations to illustrate this.

try:

 f = open("test.txt",encoding = 'utf-8')

 # perform file operations

finally:

 f.close()

This type of construct makes sure the file is closed even if an exception occurs.

Python Custom Exceptions
In this article, you will learn to define custom exceptions depending upon your requirements.

Python has many built-in exceptions which forces your program to output an error
when something in it goes wrong.

However, sometimes you may need to create custom exceptions that serves your
purpose.

In Python, users can define such exceptions by creating a new class. This exception
class has to be derived, either directly or indirectly, from Exception class. Most of the
built-in exceptions are also derived form this class.

>>> class CustomError(Exception):

... pass

...

>>> raise CustomError

Traceback (most recent call last):

...

https://www.programiz.com/python-programming/file-operation
https://www.programiz.com/python-programming/exceptions

__main__.CustomError

>>> raise CustomError("An error occurred")

Traceback (most recent call last):

...

__main__.CustomError: An error occurred

Here, we have created a user-defined exception called CustomError which is derived
from the Exception class. This new exception can be raised, like other exceptions,
using the raise statement with an optional error message.

When we are developing a large Python program, it is a good practice to place all
the user-defined exceptions that our program raises in a separate file. Many
standard modules do this. They define their exceptions separately
as exceptions.py or errors.py (generally but not always).

User-defined exception class can implement everything a normal class can do, but
we generally make them simple and concise. Most implementations declare a
custom base class and derive others exception classes from this base class. This
concept is made clearer in the following example.

Example: User-Defined Exception in
Python

In this example, we will illustrate how user-defined exceptions can be used in a
program to raise and catch errors.

This program will ask the user to enter a number until they guess a stored number
correctly. To help them figure it out, hint is provided whether their guess is greater
than or less than the stored number.

define Python user-defined exceptions

class Error(Exception):

 """Base class for other exceptions"""

 pass

class ValueTooSmallError(Error):

 """Raised when the input value is too small"""

 pass

class ValueTooLargeError(Error):

 """Raised when the input value is too large"""

 pass

our main program

user guesses a number until he/she gets it right

you need to guess this number

number = 10

while True:

 try:

 i_num = int(input("Enter a number: "))

 if i_num < number:

 raise ValueTooSmallError

 elif i_num > number:

 raise ValueTooLargeError

 break

 except ValueTooSmallError:

 print("This value is too small, try again!")

 print()

 except ValueTooLargeError:

 print("This value is too large, try again!")

 print()

print("Congratulations! You guessed it correctly.")

Here is a sample run of this program.

Enter a number: 12

This value is too large, try again!

Enter a number: 0

This value is too small, try again!

Enter a number: 8

This value is too small, try again!

Enter a number: 10

Congratulations! You guessed it correctly.

Here, we have defined a base class called Error.

The other two exceptions (ValueTooSmallError and ValueTooLargeError) that are
actually raised by our program are derived from this class. This is the standard way
to define user-defined exceptions in Python programming, but you are not limited to
this way only.

